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SMALL PERTURBATION IN THE PROBLEM OF JET IMPINGEMENT:
CONSTITUTIVE EQUATIONS

E. A. Karabut UDC 532.59

The well-known steady-state problem of impingement of two plane jets of an ideal incompressible
fluid moving with the same velocity is refined and extended to the case of unsteady interaction.
Equations describing perturbation propagation on the free surface of the impinging jets are obtained
and linearized on the steady-state solution.
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Introduction. The problem of impingement of two jets moving at an angle toward each other with the
same velocity which can be considered equal to unity without loss of generality is one of the simplest problems
solved by the Kirchhoff method [1]. It arises from the problem of fluid flow from two hoses (more precisely, slots) of
different thicknesses (Fig. 1a) in the limit where these hoses move to infinity in directions opposite to the directions
of the jet velocities. This results in a steady-state jet flow which is shown schematically in Fig. 1b.

Investigation of unsteady flow is necessary, for example, for impingement of jets moving at different velocities.
In this case, a continuous steady-state solution cannot be constructed because different Bernoulli constants
cannot provide pressure continuity at the critical point. A moving coordinate system in which the flow is steady-
state can be found only in the particular case of head-on impingement where the jet velocities are different and
directed toward each. In the case where the jets impinge at an angle, such a system does not exist. Unlike in the
case of head-on impingement, in this case there is a distinguished point, for example, the point of intersection of the
midline of the impingement jets (point A in Fig. 1a). In a coordinate system rigidly attached to this point, the flow is
apparently periodic in time, which is confirmed by experimental studies [2] which showed the existence of aperiodic
waves on the free surface during interaction of two oil flows moving at different velocities. This periodic interaction
of jets can be regarded as the simplest model of wave formation during explosion welding [3]. More complex models
taking into account acoustic perturbations, viscosity, thermal conductivity, surface tension, instability of the von
Kérmdn vortex street, etc., are presented in [4].

The equations obtained below can be used to describe the interaction of jets moving at different velocities.
However, first of all, it is necessary to derive equations to study the stability of steady-state impingement of jets
moving at the same velocity. In this case, it is assumed that perturbations decrease at infinity, i.e., do not influence
the steady-state flow velocity at points at infinity.

Slightly perturbed jet flows are commonly studied by using the equations given in [5] with the boundary
conditions extended to the unperturbed free surface. The question of the validity of this procedure for the case of
unsteady interaction of jets where there are four points at infinity remains open. In this case, in fact, a conformal
mapping of the perturbed flow region onto the unperturbed region is performed. It is not clear whether it is possible
to reach a correspondence of the points at infinity because conformal mapping is known to be only a three-parameter
one. To avoid errors, we first rigorously formulate the nonlinear problem, separately stating the assumptions used
for this, and only then we perform linearization of the problem.
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Fig. 1. Diagram of steady-state impingement of jets: (a) flow from two slots; (b) flow from infinity;
arrows show the jet velocity direction.
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Fig. 2. Conformal mapping Z(({) of a circle of unit radius in the auxiliary plane ¢ onto the flow region in

the plane Z in the case of steady-state interaction of jets: convergent jets (1 and 3) and divergent jets (2
and 4); arrows show the jet velocity directions.

Steady-State Solution. The interaction of two convergent jets results in the formation of two divergent
jets (Fig. 2). We use h; to denote the width of the jth jet (j = 1,4). In the case of convergent jets, k1 > 0 and
hs > 0, and in the case of divergent jets, ho < 0 and hy < 0. Let a; = e%i be complex velocities at points at
infinity. The argument 6; characterizes the angle at which the jth jet is directed. We place the origin of Cartesian
coordinates X,Y (Z = X + 1Y) at the critical point, i.e., at the point at which the fluid velocity is equal to zero.
Conformal mapping of the unit circle located in a certain auxiliary plane ¢ onto the flow region (see Fig. 2) and the
complex velocity U expressed in terms of ¢ are given by the formulas [1]

1 hy ¢

Z(¢) = Tm(1-0), v =c¢ (1)
s ; aj aj

The points a; located on the unit circle |(| = 1 are preimages of the infinitely remote points of the jets in the

plane Z. The second equation in (1) implies that the plane ¢ is the hodograph plane.

Notwithstanding that the parameters of the impinging jets are given, the parameters the of divergent jets
cannot be determined uniquely. The parameters of the convergent jets are given by the quantities hy, hs, a1, and
as. To find the four parameters of the divergent jets ho, hy4, a2, and a4, we have only three equations:

4

> hi=0; 2)
4
> hja; =0; (3)
j=1

4

Z Zj =0. (4)
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Fig. 3. Geometrical interpretation of the momentum conservation law
(notation the same as in Fig. 2).

Equation (2) is the mass conservation law, and Egs. (3) and (4) are obtained from the momentum conservation law.
The energy conservation law implies an expression coincident with (2). The momentum conservation law admits
the following geometrical interpretation. If we introduce auxiliary vectors I, each of which is directed along the
midline of the kth jet to the critical point and has length equal to the thickness of the kth jet (Fig. 3), the sum of
momenta of the four vectors Iy, relative to any point will be equal to zero. It is easy to show that in this formulation,
the momentum conservation law holds identically for any flow (1).

Thus, the solution of the jet impingement problem is not unique. We specify one parameter of the divergent
jets, for example, the angle 02 (or as); then, from Egs. (2)—(4), we find the remaining parameters:

hihsas (al - a3)2

B h1a3(a1 — a2)2 + h3a1(a3 — a2)2’

alag[hl (a1 — az) + h3(a3 - aQ)]
h1a3(a1 - ag) + h30,1(6L3 - a2) ’

hy = —h1 — hg — ha.

ho =

g4 =

Substitution of a; = ei yields
- h1h3[1 — COS (91 — 93)]
2= hl[COS (91 — 92) — 1] + hg[COS (03 — 02) — 1] '

Fixing 65, we obtain flow which will be called the jet configuration. Changing the value of 65 in a certain
range, we find a one-parameter family of jet configurations for each of which the parameters of the impinging jets
(thickness and direction) are fixed. The streamlines of some possible jet configurations are shown in Figs. 4 and 5.

Previously, attempts have been made to find a unique solution of the steady-state problem of jet impingement
by obtaining the fourth closing equation which makes the problem determined. Palatini [6] was the first to calculate
the kinetic energy of the fluid in the circle || < R (0 < R < 1) and showed that, for all values of R, the minimum of
this energy is reached if the directions of the divergent jets are opposite. This gives the closing equation 64 = 05+ 7.
In later studies [7-9], the fourth closing equation was found by various methods and, as a result, the single flows
obtained in these studies were different.

Apparently, the more correct point of view is the one expressed by Milne-Thomson, according to which the
uncertainty is undoubtedly due to the fact that we consider steady-state motion that has already developed and
ignore the initial conditions that led to the steady-state motion considered. According to Milne-Thomson, we can
assume, for example, that the examined motion results from the start of jets at different points at different times
at an interval t; there is no doubt that to different times ¢ there correspond different steady-state motions although
there is no reason to believe that all of them are steady-state [1]. In other words, each jet configuration is determined
by the prehistory of its formation. Therefore, to choose the jet configuration, it is necessary to consider unsteady
motion, and to determine the equivalence of jet configurations, it is reasonable to study them for stability.
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Fig. 4. Streamlines of possible jet configurations for fixed parameters of convergent jets (61 = 0,
03 = 37/4, hi = 1, and hs = 1.5) and various parameters of divergent jets: (a) 62 = —m, 04 =
0.26117, hy = —1.0497, and hy = —1.4502; (b) 62 = —0.85m, 64 = 0.35417, hy = —0.8746, and
hs = —1.6253; (c) 02 = —0.7m, 04 = 0.42717w, he = —0.7707, and hs = —1.7292; (d) 62 = —0.557,
04 = 0.49057, he = —0.7237, and hy = —1.7762; (e) 62 = —0.47, 04 = 0.55137, he = —0.7259, and
ha = —1.7740; (f) 62 = —0.257, 64 = 0.61537w, ho = —0.7776, and ha = —1.7223; arrows show the
jet velocity directions.
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Fig. 5. Streamlines of possible jet configurations for fixed parameters of convergent jets (01 = 0,
03 = w/2, hi = 1, and hs = 3) and various parameters of divergent jets: (a) 62 = —m, 64 = 0.3440,
he = —0.6, and ha = —3.4; (b) 62 = —0.97, 64 = 0.3600w, he = —0.5103, and hs = —3.4896;
(c) 02 = —0.87m, 04 = 0.3737mw, ho = —0.4564, and hy = —3.5435; (d) 62 = —0.77, 64 = 0.3860,
ha = —0.4276, and hy = —3.5723; (e) 62 = —0.67, 04 = 0.39787, ho = —0.4188, and hy = —3.5811;
(f) 02 = —7/2, 04 = 0.40967, ho = —0.4285, and hy = —3.5714; arrows show the jet velocity
directions.
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Fig. 6. Conformal mapping Z((,t) of a circle of unit radius in the auxiliary plane ¢ onto the variable
region in the plane Z occupied by the fluid in the problem of plane unsteady flow.

We introduce the constants
4

1 h;
My = ; o (5)
(n is any integer) which characterizes the jet configuration considered. From (2)—(4), it follows that My = M; =
M_; =0.

Equations of Unsteady Fluid Motion. We consider the case of plane unsteady potential flow where
the fluid occupies a bounded simply-connected region and the entire boundary of the region is free. At the initial
time ¢t = 0, the region is known. We assume that the field of external forces is absent; therefore, the subsequent
deformation of the region occurs by inertia and is due to the given initial velocity field. The problem consists of
determining the shape of the region and the velocity field at the subsequent times ¢ > 0 in the case where the
pressure on the boundary of the region is constant and surface tension is absent.

We cousider a circle of unit radius |¢| < 1 in an auxiliary plane ¢, which in this case is not the hodograph
plane. Unlike in the steady-state case (1), conformal mapping of the circle || < 1 onto the region occupied by the
fluid (Fig. 6) and the complex velocity are functions of time:

Z(¢,t), UG 1) (6)

It should be noted that the introduction of functions (6) gives a number of advantages compared to the
traditional formulations of the problem because, instead of the boundary-value problem in an unknown region with a
moving boundary in the plane ¢, we obtain a boundary-value problem with a fixed boundary — the unit circle |¢| = 1.
The problem of seeking two functions which are analytic in the circle |¢| < 1 — the conformal mapping Z({,t) and
the complex potential ®({,t) — was first solved in [10, 11], where two cubically nonlinear operator equations were
obtained. In [12], it is noted that, if one uses the complex velocity U((,t) = ®¢/Z¢ instead of the complex potential,
the boundary conditions and the corresponding operator equations become quadratically nonlinear. In [13], it is
shown that, if instead of the pair of unknown functions (6), one uses another pair R(¢,t) = 1/Z:(¢,t), U(C,t), the
corresponding operator equations resolvable for the time derivatives do not contain division and are only cubically
nonlinear. This is convenient in the numerical solution of the problem, especially when it is sought in the form of
series. Examples of using this procedure to solve water wave problems are given in [14, 15].

The first kinematic boundary condition implies that the projection of the velocity U of a fluid particle located
on the free boundary coincide with the projection of the velocity Z; of the boundary onto the normal to the free
boundary. In other words, the vector Z; — U is tangential to the free surface. Because, on the free surface ¢ = e,
the normal vector is equal to iZy and the scalar product of the vectors Z; and Zs is given by the formula Re Z; Z,
we obtain the resulting kinematic condition in the form

Im [Zy( Z — U)] = 0. (7)

The second dynamic boundary condition can be obtained from the condition of orthogonality of the accel-
eration to the free surface. For convenience, we denote the time in the Eulerian and Lagrangian coordinates by 7
and T, respectively. Then, the dynamic condition can be written as

Re ZoUr = 0. (8)
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We find the acceleration Ur. Because Z and 7 are independent variables, we have

Zy = Zy+ ZeCr = 0.

Consequently,
o 0 +e o0 _ 0 Z; 0
or ot Ta¢ ot Z o
Taking into account that
0 0 0 0 0 0 1 0
or or "oz or "Voz 0z 2 0¢
we have the formula p -
T
Ur =U; Z Ue + Z Uc.

Substituting this formula into (8) and then replacing /96 by i€ 9/9¢ in (7) and (8), we obtain two boundary
conditions for the two analytic functions Z((,t) and U((,t):

Im ((ZU; —UcZi+U:U) =0,  Re(CZU— 2 2:)C) =0, || =1. (9)

We denote by S the Schwarz operator which restores the analytic function in the unit circle from the value
of its real part on the boundary of the circle. This problem is solved to within an additive imaginary constant
which is chosen so that the imaginary part of the obtained function ¢ = 0 at the center of the circle is equal to zero.
Then, the relation f = S(g) implies that, first, for || < 1, the function f(¢) is analytic, second, on the boundary
of the circle |¢| = 1, the condition Re f = Reg is satisfied, and, third, at the center of the circle, Im f(0) = 0.

Let us show that from conditions (9), it is possible to obtain the following operator equations:

iC( 20— UcZe) + Gt =0, G((t) = S(CULU ) (10)
Z, A | U
(2~ ¢ TACHIB=QE, Q(C,t):S(CZC). (11)

The first equation (10) is found directly from the first boundary condition (9) because the function {(Z.U; —
U¢Zy) is analytic. To obtain the second equation of (11), we first divide the second boundary condition (9) by |Z¢|?
(this can be done because, according to the conformality condition, |Z¢| # 0). As a result, we obtain the boundary
condition

Zy U
R =R =1 12
e((z)=Reley ) l=1, (12)
in which the function Z;/({Z¢) is not analytic everywhere because for ¢ = 0 it has a pole A(t)/{, where
.
At) = %13%) Z (13)

If the quantity A(t)/( is subtracted from any expression taken on the circle ¢ = €% and then the same but complex-
conjugate quantity A(t) ¢ is added to the result, the real part of the initial expression will not change. Therefore,
the boundary condition (12) can be written as
Zy  A(t) U
Re(CZc ¢ +A(t)() Re(CZC),
where the left side is the real part of the analytic function. Hence, we obtain Eq. (11), in which the function B(t) is
determined from the condition Im Q(0,t) = 0.

Equation (11) contains the complex-valued functions of time A(¢) and the real-valued functions B(t) because
the family of conformal mappings of the given region onto the other specified region is a three-parameter one.
These functions are determined by the chosen normalization of the conformal mapping. We show, for example that
specifying the normalization

Z(0,t) = const, arg Z¢(0,t) = const, (14)
we have A = 0 and B = 0.
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Fig. 7. Conformal mapping Z((,t) of a circle of unit radius in the auxiliary plane ¢ onto the flow
region in the plane Z in the problem of unsteady impingement of jets (notation the same as in
Fig. 2).

Indeed, because the function Z((,t) is analytic at the center of the circle ( = 0, in view of the first equation
of (14), this function can be expanded in the power series

Z(C,t) = const + Z1(t)C + Zo(t) 2+ .. ..
Differentiating this series with respect to time ¢t and (, for ( — 0 we have
Zi)Zc = (2070 + O(CP). (15)
Substitution of expression (15) into (13) yields the equality A = 0, which, in view of (11), implies that
B = %in% ImZ,/((Z;). Again substituting expression (15) into the obtained relation, we have B = Im Z;/Z;.
However, this quantity is equal to zero because differentiation of the second normalization condition (14) written
as Im1In Z:(0,t) = const with respect to ¢ gives Im th/ZC‘C =0orImZ /Z =0.
=0
Thus, with the normalization (14), we have the Cauchy problem
U U 1S (iU U
thczgs( ) ) 18U )
CZ¢ CZ¢ CZ¢
which describes the deformation of the region occupied by the fluid and bounded only by the free surface for the
case where the shape of the region at the initial time is known and the initial velocity field is specified.
It should be noted that the second term in the second equation (16) does not contain singularities for ¢ = 0.

Indeed, for ¢ = 0, the imaginary part S(i(U.U) vanishes according to the definition of the operator S, and the real
part is vanishes by virtue of the average theorem:

26,0 =20, Ur=cUes( U0 =), (16)

27 27
2
ReS(iCUCU)‘ Oz;ﬁ/Re(ichU)de: L OUR gy
0

(= 4 o7}
0

Equations of Unsteady Interaction of Jets. We consider the case of unsteady interaction of jets where
a certain steady-state jet configuration given by formulas (1) is subjected to a certain unsteady perturbation which
is not considered small. We assume that, at the initial time, the perturbation is concentrated in a finite region of
the plane Z (Fig. 7) and does not influence the points at infinity.

Unlike in the steady-state case, in the case considered, the points at infinity in the plane Z cannot be put in
correspondence to fixed points in the plane ( because the conformal mapping is a three-parameter one. Hence, the
position of at least one of the four points in the plane ¢ is a function of time. Generally, four moving points ¢ = ¢;(t)
correspond to the points at infinity in the plane Z.

The question of whether Eqgs. (10) and (11) describing the flow shown in Fig. 6 are applicable to the unsteady
interaction of jets presented in Fig. 7 cannot be answered unambiguously because in Fig. 7 there are points at infinity
and in Fig. 6 they are absent. This difference is important because Eqgs. (10) and (11) were obtained under the
assumption that the functions

ZeUr = UcZy,  Zi/(CZ),  U/(CZ) (17)
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are continuous everywhere on the boundary |(| = 1. It is necessary to elucidate whether this assumption is valid
for the case of unsteady interaction of jets at the points ¢ = ¢;(¢) at which the function Z is not bounded. We show
that, with some assumptions on the nature of the flow, this assumption is valid and Egs. (10) and (11) are suitable
for describing the unsteady interaction of jets.

We assume that, at the initial time, the steady-state flow given by the parameters h; and a; (j = 1,4) is
subjected to a perturbation which tends to zero as |Z| — oo, and consider the evolution of this perturbation in
time. In a study [16] of the stability of jet flow from a slot, it is noted that the perturbation propagation has a
coaxial nature: the perturbations in jets propagate at the same velocity as the jets and reach infinity only in infinite
time. The following physical assumption therefore takes place.

Assumption 1. Any perturbations in jets which are originally concentrated in a finite region Z of the plane
cannot cause perturbation of points at infinity |Z| — oo in finite time.

Thus, we will consider unsteady jet flows whose thickness, direction, and jet velocity remain unchanged at
infinity.

The constancy of the thickness and direction of the jets is provided by the conformal mapping representation
1 h; ¢ )
Z(C,1) W; ol (1 o) TFGD: (18)
Indeed, if the function F'((,t) is analytic for { = ¢;(¢), then representation (18) implies that, in passing through
the point ¢ = ¢;(t) on the circle |[(| = 1, the imaginary part of the expression Z((,t)a; undergoes a jump of the
quantity h; (this implies that the thickness of the jth jet is constant), and the real part of expression (18) for
¢ = ¢;(t) becomes infinity (this implies that the direction jth jet is constant).

If the function U((,t) is analytic for ¢ = ¢;(¢), the condition of constancy of the direction and velocity is
written as

Ulej(t),t) = aj. (19)
Unlike the function U((,t), the limiting value of the function F'(¢,t) is not fixed:
F(ej(t),t) = fi(t)- (20)

The unknown functions f;(t) are found by solving the problem.

Thus, the following mathematical assumption is valid.

Assumption 2. The functions U(¢,t) and F((,t) are analytic for ¢ = ¢;(t).

Because the asymptotes of the free surface remain unchanged in time as Z — oo, the following four identities
should hold:

(—en i (t)

These identities are consequences of the fact that the distance from the coordinate origin to the asymptotes does
not change. Below, it is shown that identities (21) follow from the assumption of analyticity of the functions U((, t)
and F((,t).

Let us show that if Assumption 2 is valid, the functions (17) are bounded for ( = ¢;(t). Indeed, differentiating
representation (18), we obtain the derivatives

1 h; 1 1 h; ¢; 1 h; ¢; 1
Zi = — i Fr, Zy—— 7 3 F, 22
¢ ﬂ'z iC; e ! ﬂzajcj+7rzajcj1—é/cj+ ! (22)
which have a pole at the point ¢ = c¢;. However, the function Z:U; — U¢Z; at this point remains bounded.
Indeed, using formulas (22), we find that for the function considered, the coefficient for 1/(1 — (/¢;) is equal

1 hyj

! Chm (U¢cj + U). We show that this coefficient is equal to zero. Indeed, from the analyticity of the
T ajCj C—c;j
function U(¢,t) for ¢ = ¢; and from formula (19) follows that this function is expanded in the series

lim Im{i an; Zj In (1 - ¢ ) +anF(<,t)} —const  (n=1,4). (21)
Jj#£n

to —

U:CLj+U1(<—Cj)+UQ(<—Cj)2—|—....
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Combining the derivatives of this series with respect to ¢t and ¢

U; = Ul(c — Cj) + ul(—éj) + ZUQ(C — Cj)(—éj) + ...,

UC :u1+2u2(C—cj)+...7
we find that, at the point ¢ = ¢;, the quantity U; + Uc¢; has first-order zero:
Ut+U<éj=1l1(<—Cj)+....

In (17), the second and third functions Z;/((Z) and U/(¢Z.) also are bounded at the point ¢ = ¢; because
directly from formulas (22), it follows that
¢j U
lim — lim = 0.
(—cj CZC Cj C—cj CZC
Thus, if the functions F'(¢,t) and U((,t) are analytic for ¢ = ¢;(t), this class of flows can be described by
system (10), (11).
Equations without Singularities. System (10), (11) is inconvenient for the analysis and numerical
solution of the problem because the function Z((,t) and its derivatives have singularities. Distinguishing these

singularities, we obtain new equations for the six unknown functions ¢;(t), F((,t), and U((,t). Substitution of
derivatives (22) into the second equation of (11) yields

I=hjé¢; 1sx=hjé¢; 1 l—h; 1 A ,
(Ft—ﬂzajcj*ﬁzajc;1_</cj)/<CF<_wZa;1—</cj):Q(<’t)+<_AC_’B' (23)

Passing to the limit ( — ¢; in (23), we find the first four equations for the functions ¢;(¢):

éj/Cj+A/Cj—ACj—iB:—Qj. (24)
Here Q; = Q(c;(t),t). Substitution of ¢; from (24) into (23) yields the fifth equation
A h 1 j . h;y @Q; —Q
F=- (— 7 Q; F, —A(C—1iB F, N . 2
i WZCLJ‘C]' WzanJ+< <(C C ! )+< <Q+7rzaj ].—C/Cj (5)

The sixth equation is obtained from relations (10):

U, = {iS(ReicU U) + CU[Fi+ 3 asz% 1 _Cé/cj} V(e -ty Zj 1 _Z/CJ). (26)

n (26), it is necessary to substitute the time derivatives ¢; and F; from expressions (24) and (25).
Thus, if the initial conditions are given by

U(C.00=0(), F(0)=F(C), ¢(0)=g, (27)

the evolution of the perturbations propagating in the jets is described by the Cauchy problem (24)—(27) for the
system of six equations resolvable for the time derivatives ¢;, F}, and U;. In this case, the initial conditions U (©),
F(¢) should be analytic for ¢ = ¢;. In addition, from (19) it follows that the function U(¢) should be subject to
the constraint U(¢;) = a;. Additional constraints on the function F(¢) are not required.

We note that the last term in Eq. (25) has no poles. If, in this term, we pass to the limit { — ¢;, the
multiplier (Q; — Q)/(¢; — ¢) becomes the derivative Q¢. We pass to this limit another way. We first calculate the
derivative of ¢ with respect to relation (23):

{(F<t+ Zh% (1_§/c) )(CFC_iZZj 1_1</cj)
GRS CEIS (2D DU AP

1 h; 1 2 A
[ 1 ) beasa e
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and then we consider the limit ( — ¢,. The terms containing the multiplier 1/(1 — ¢/¢,)? in the numerator of
fraction (28) are cancelled, and the terms with the multiplier 1/(1—¢/c,)? therefore become higher terms. Collecting
these terms in the numerator and denominator, we have

i [ (- )

e i#n
h 1 hijc; 1 h;c; 1 h? A
LI () heanmae
wancn(t WZCLJ'C]‘—’_T(; aje; 1—C/¢ m2a2 +c%+ CH?nQC (29)

Using the formula f, = lim¢_., (F; + F¢é,) obtained by differentiation of expressions (20) with respect to t,
transforming the sums in (29) according to the rule

1Zhj éj/Cj_én/Cn:iZhj ¢ — Cn _1énzhj (30)

™ a 1—cn/cy i e I
and taking into account that, according to (4), the last sum of expression (30) is equal to —h, /ay, we obtain
d 1 h; ¢ hn (A hy
li [ N 31(1— ) WF ,t}:— ( An) LQc (e t). 31
gt C_}gl(t) L@ ; o n ¢ (t) +anF(¢,1) 7 \e, + Aen ) + e Qclen,t) (31)

Using the imaginary part in (31), we obtain identity (21) because the imaginary part of the first term on the right
side of (31) is equal to zero, and the vanishing of the imaginary part of the second term follows from the definition
of the function @@ and the equalities

’ | , U U
IanQg(Cmt) = g‘li{lclnImCQC = _glglclnReQe = —ghm Re (CZC)G = lim ImZC(CZc)C =0.

—Cn (—cn

The last limit vanishes because the function U is bounded and by virtue of representation (18).

From the form of operator system (24)—(26), it follows that if the functions F({,t) and U((,t) are analytic
at the points ( = ¢;, the time derivatives Fi(¢,t) and Uy(¢,t) are also analytic at these points. This suggests
that the examined class of flows exists. In other words, if the initial conditions (27) are analytic at { = ¢;, the
functions F(¢,t) and U((,t) have this property at the subsequent times as well.

It should be noted that if the analytic functions are considered at ( = c; the problem is simplified and
the class of solutions is narrowed. However, it is possible to weaken assumption 2 and replace analyticity by
boundedness. In other words, under the assumption that, at ¢ = ¢;, the functions F'({,t) and U((,t) and their first
derivatives are bounded, Egs. (10) and (11) are still applicable to this class of solutions. Moreover, from (21), it
follows that only the imaginary part of the expression a;F'(¢,t) should be limited and the real part can increase
without bound. If this increase is not too rapid, the perturbations at infinity still decrease but at a lower velocity
than in the case of analyticity or boundedness, and Egs. (10) and (11) are also applicable in this case.

Linearization. We find a solution of system (24)-(26) that differs only slightly from the steady-state
solution (1):

U t:e) =UDC) +eUDC ) +..., F(Cte)=FO) +eFDC ) + ...,
cj(tie) = cg_o) + 50;1)(75) +... (j=1,4) (32)
(e is a formal small parameter). The zeroth approximation corresponds to steady-state jet flow, and, according to
expressions (1), we therefore have

vO@Q)=¢  FOQ=0  d”=aq.

The first approximation corresponds to some small perturbations propagating in steady-state jets.

Substituting expansion (32) into Eqs. (24)-(26) and equating the terms at the first power of the small
parameter €, we obtain equations for the first correction to the steady-state solution c§1), FO UM which will be
less lengthy if, instead of the last two series (32) we use one series

Z(¢tie) = 20 + 2Dt + (33)
and instead of formulas (24)—(26), we use Egs. (10) and (11).
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From relations (1), we obtain the zeroth approximation and its derivative

4
1 by ¢ 0 leh; 1
ZO = "3 (1- 20 =" : 4
T a; n( aj)’ ¢ T a? 1—¢/a, (34)

j=1

The function Z éo) and the function R (¢) =1/Z éo) have a number of important properties which are used to solve
the boundary-value problems considered below.

In addition to series (32) and (33), it is also convenient to use auxiliary series for the functions included in
Egs. (10) and (11):

G t:e) =GO +eGV G+, QG te) =QV(Q) +eQM(¢ ) + ..,

Alt;e) = AQ 4+ eAM @)+ ..., B(t;e) = BO +eBO@) + ...

We show that the steady-state solution (zeroth approximation) is indeed a solution of Egs. (10) and (11).
Passing to the limit € — 0 in (10) and (11), we obtain

GO =0, —A9D/¢+AO(+iBO =QO), (35)
where
. ¢
GO = Si¢0), QUG = S(czéf” ). (36)

Equations (35) are valid because, first, steady-state flows always obey condition (14) and, hence A©®) = 0 and
B = 0; second, both functions (36) are identically equal to zero. For the first function, this is obvious because
on the unit circle, ( = 1/¢. The vanishing of the second function follows from the following lemma.

Lemma 1. For |¢| = 1, the following identity holds:

2z = -z, (37)

Proof. We multiply the derivative Zéo) in (34) by ¢2. Next, we perform complex conjugation, i.e., replace
the quantities ¢ and a; by 1/¢ and 1/a;, respectively. As a result, on the unit circle, the following equalities hold:

a0 L by P a0 _ L= hjay 1
cr _wzail—C/aj’ G =2 ¢y (38)

Using identities (2)—(4), we prove that expressions (38) are equal. Sequentially reducing the power ¢ in the first
expression (38), we obtain the relation

2,0 Cx—hjClaj—14+1 (—=h; 1 1 (laj—1+1
2 _wzaj lj—C/aj _ﬂ'zajl—C/aj_thJ 1J—C/aj

™ "1-Cla; 7 ¢  1-(/a; ™ ¢ 1-(/a;
which coincides with the second expression in (38). Thus, lemma 1 is proved.
One more nonobvious property of the function Z éo) is formulated in the following lemma.

Lemma 2. The function R (¢) = 1/Zé0) is a fourth-degree polynomial of (.
Proof. We reduce the sum of the second formula (34) to a common denominator. As a result, the numerator
contains the expression

ihjﬂai@— ack). (39)
=l k#j

Let us prove that the third-degree polynomial (39) is a constant, i.e., the coefficients of the polynomial at all powers
of (, except for zero, are equal to zero.
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As an example, we consider the coefficient at ¢

1 /h h 1 /h h 1 /h h
—a%a%agai{ ( 1—1— 4)+ ( 1+ 3)+ ( 1+ 2)

aiaq \aq a4 ajaz \ai as aias \ap ag
1 /h h 1 /h h 1 /h h

* agan o a0+ azan Lo * a0+ s Can * a))
aga4 \ Qg (o7} a2a3 \ a2 as azayg \as a4

Using (4), we replace each two terms in parentheses by two others. As a result, we have

a%a%agai{ 1 (h2+h3)+ 1 (h2+h4)+ 1 (h3+h4)

aiaq \a2 as apaz \az a4 aipaz \as a4

1 /h1 hs 1 /h1  hg 1 /h1  he
* aganlar ¥ as) F azan Lo * an) F g Loy * )]
aga4 \ Q1 as az20a3 \ a1 (o7} aza4 \ a1 ag

After some regrouping, we obtain
ajasagagfar(ha + hg + ha) + az(h1 + hs + ha) + az(h1 + ho + ha) + as(hy + ha + h3)).
Simplifying each sum in parentheses by using formula (2), we have
—ajasazas(arhy + ashe + ashs + aghy). (40)
According to (3), Eq. (40) is equal to zero. Similarly, it is proved that the coefficients at the other powers ¢ are

also equal to zero. Thus,
1= o= (17 ) 0 0) (000 5)

where Ms is a constant defined by formula (5). Lemma 2 is proved.

First Approximation. We derive the equations for the first approximation. Note that, in contrast to F'(1),
the first approximation of Z() is not an analytic function at the points ¢ = a;. Indeed, differentiation of (18) with
respect to e shows that, at these points, the function Z(!) has poles

&)

1—hj Gc
7(1) — J J FO.
7T Z al 1—(/a; +
Differentiating the first and second equations in (10) with respect to € and then passing to the limit ¢ — 0,
we obtain

iz — 20y + W =,
where
GO = ScUN U®) + ScUL UD ) = SEULY) + S UW). (41)
To find Schwarz operators in (41), we expand the complex velocity in the Taylor series
UD () = uo 4+ url +ual?+ ...
The function U, C(l) is analytic, but for ( = 0, its imaginary part is not equal to zero. Therefore, the first Schwarz

operator in (41) is equal to iUc(l) —iRew;. The second Schwarz operator in (41) is found from the formulas

U IR Um Um
’UC ):—S(iU CUO MZO):_S(ZUC —Zzo—z‘uog):—’Uc +Zzo+inC+iC.

Here the real constant C' is determined from the condition that the imaginary part of the operator S vanishes
for ¢ =0:

Scum) = —s(

. UM g
C——%E%Re(— ¢ +C+u0§)—Reu1.

Thus, we have
GO = iUM —i(UD —ug) /¢ +iug €.
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Similarly, differentiating Eq. (11) with respect to ¢ and passing to the limit ¢ — 0, we obtain

(1) 1 1 (1)
Zt(o) AT a0 ¢(+iBM =W, QW = S( U(<§>) - S( ZC<0) ) (42)
(Z; ¢ ¢z 2(2;7)?
In (42), an arbitrary normalization of the conformal mapping was used. If we use the normalization (14), we have
A =0 and BM = 0.
Let us find the first Schwarz operator in the expression for Q). According to the conformality condi-
tion, Zéo) # 0 and, hence, the following power series exists:

UM /2 = bg + b1¢ +baC? + b5 + ... (43)
Using series (43) and equality (37) written as CZéO) = —C3Zéo), we obtain
U U UM UM /20 — by — b1¢ — by
S = == =-5 +00 ¢ +b1 ¢+ b2
(0 (0) 3
(L) =5 = -s( )= )
UYD by by by 5 ) ‘
:—CBZéO)+<3+<2+<—b0C —b1C —bgC-i—ZCl. (44)
Passing to the limit ( — 0 in expression (44), we have
U
lim §( ) = ~bs+iCr.

According to the definition of the operator S, the imaginary part of this quantity should be equal to zero; therefore,
Cy = Imbs. Thus, the first Schwarz operator in (42) is found.
We now find the second Schwarz operator in (42). Considering the series
Z0 )(Z)2 = do + diC + daC? + .., (45)
we similarly find
( z ) = (Zél)/(ZéO))Q —do = i( Zél) _do dy
(2 ¢? ez ¢ ¢
For ¢ — 0, the quantity (46) is equal to da + iCy; therefore, Co = — Imds. From this, it follows that

U Zél) bop b1 | b2 3 2 do  di 2 ;
_C3Zé0) — C2(Zéo))2 + <3 + <_2 + ¢ —bo (=01 —ba( + <_2 + ¢ —dy (¢ —d1C+ZIm(b3+d2).
Denoting the coefficients at the power (=2 by ¢;(t), we obtain the following system of equations for the
evolution of small perturbations propagating on the steady-state solution:

+doC® +di ¢) = 4 doC? 4 dy € +iCy. (46)

Q(l) —

UM
~¢zV +ul) - ot Uiz = —”CO — g,
1) (0 a Zéo) o2 (% |, @1, G o
Zy )CZC )+ZC N AL ¢ = (*(Z; ))2(<3 + e + c +Q3—QOC3—Q1C2—Q2C—Q3)-

The right sides of system (47), which has a nonstandard form, contain the functions of time wg(t) and g;(t)
which are expressed in terms of the unknown functions Z*)(¢,t) and UM (¢, t) and their derivatives for ¢ = 0:

ug = UM (0,1), qo = bo, @ = b1 + do,
@2 = b +dy + AW, g3 = (b +dz —iBWM) /2.
More detailed expressions for g;(t) can be found by analyzing series (43) and (45).

Conclusions. Equations describing the evolution of perturbations propagating on impinging jets were
derived and analyzed. Nonlinear equations were obtained which describe the evolution of jets for the case where the
perturbations are not assumed small and which can be used for the numerical solution of the problem. Linearization
of these equations leads to nonstandard equations which in [17] were called loaded equations because their right
sides contain the solution and its derivatives taken at the coordinate origin.

This work was supported by Council for Grants of the President of the Russian Federation for Support of
Leading Scientific Schools of the Russian Federation (Grant No. NSh-2260.2008.1).
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